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Abstract

In this paper the homotopy analysis method for strongly non-linear problems is employed to give two kinds

of explicit analytic solutions of similarity boundary-layer equations. The analytic solutions are explicitly expressed

by recurrence formulas for constant coefficients and can give accurate results in the whole regions of physical

parameters.
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1. Introduction

Recent interest in the study of convective flow in

fluid-saturated porous media has been mainly motivated

by its importance in many natural and industrial prob-

lems. Numerous authors cite a wide variety of applica-

tions involving convective transport in porous media

that include utilization of geothermal energy, oil reser-

voir modelling, building insulation, food processing and

grain storage, fiber and granular insulations, contami-

nant transport in groundwater, casting and welding in

manufacturing processes, nuclear engineering, disper-

sion of chemical contaminants in various industrial

processes and in the environment, design of packed bed

reactors and underground disposal of nuclear waste

materials, etc. Several others investigate the intricate

nature of solution structure from a fundamental point of

view in idealized settings. This topic is therefore of vital

importance to these applications, thereby generating the

need for their fully understanding. Much of the recent
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work on this topic is reviewed by Ingham and Pop [1,2],

Nield and Bejan [3], Vafai [4], and Pop and Ingham [5].

Further, the study of laminar boundary layer flow of an

incompressible fluid due to a stretching surface has

several important engineering applications such as the

aerodynamic extrusion of plastic sheets, the cooling of

an infinite metallic plate in a cooling bath, the boundary

layer along liquid film condensation process, glass and

polymer industries. Crane [6] produced the first study

regarding the boundary layer behavior on a plane sur-

face stretching in a viscous and incompressible quiescent

fluid. The work of Crane [6] was extended by Banks [7]

and more recently by Magyari and Keller [8]. The above

commentary both motivates and informs the work that

follows which seeks to extend limited range of under-

standing for free convection boundary-layer flows over a

vertical flat plate embedded in a fluid-saturated porous

medium or above a stretching wall in a viscous and in-

compressible fluid, governed by a non-linear differential

equation. The aim is to explore the existence of funda-

mental similarity solutions based on the homotopy

analysis method [9–14] proposed by Liao [9] to some

viscous flow problems. In view of this success in estab-

lishing an analytic solution of a series of problems,

the analytic solution for the present problems provide

detailed information on the flow and heat transfer
ed.
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Nomenclature

a, b, A constants

f , F reduced stream functions

T fluid temperature

u, v velocity components along x and y direc-

tions, respectively

wðxÞ velocity of the stretching wall

x, y Cartesian coordinates along the plate and

normal to it, respectively

Greek symbols

b parameter defined by (16)

j power law index

h reduced fluid temperature

n, g similarity variables

m kinematic viscosity

s non-dimensional fluid temperature

w non-dimensional stream function

Subscripts

w wall condition

1 ambient temperature condition

Superscript
0 differentiation with respect to similarity

variable
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characteristics in the whole ranges of physical parame-

ters. The present paper intends to offer a comprehensive

account of the boundary layers over a vertical flat plate

embedded in a porous medium or due to a stretching

wall because of their omni-presence in engineering

applications.
2. Basic boundary-layer equations

Consider the steady free convection flow over a ver-

tical semi-infinite flat plate, which is embedded in a fluid-

saturated porous medium of ambient temperature T1. It

is assumed that the temperature of the plate varies as

Tw ¼ T1 þ A�xxj, where �xx is the dimensional distance

measured along the plate and A and j are prescribed

constants. It is also assumed that the porous medium is

homogeneous and isotropic, that all properties of the

fluid and porous medium are constant, that the fluid

velocity obeys Darcy’s law and that the Boussinesq ap-

proximation is valid. Let ðx; yÞ be the non-dimensional

Cartesian coordinates measured along the plate and

normal to it, respectively, with the origin at the leading

edge. We define the non-dimensional stream function w
defined as

u ¼ ow
oy

; v ¼ � ow
ox

;

where ðu; vÞ are the non-dimensional velocity compo-

nents along x and y axis. We also define the non-

dimensional temperature s of the form

s ¼ T � T1
Tw � T1

; ð1Þ

where T is the fluid temperature and Tw, T1 are the

temperatures on wall and at infinity, respectively. Let
sw ¼ xj denote the non-dimensional wall temperature.

Then, assuming high Rayleigh numbers and that the

boundary layer approximation holds, the problem under

consideration is governed by the following equations,

see Nield and Bejan [3] or Pop and Ingham [5],

ow
oy

¼ s; ð2Þ

ow
oy

os
ox

� ow
ox

os
oy

¼ o2s
oy2

; ð3Þ

subject to the boundary conditions

w ¼ 0; s ¼ xj; on y ¼ 0; ð4Þ

s ¼ 0; as y ! þ1: ð5Þ

Under the transformation

w ¼ x
jþ1
2 f ðgÞ; s ¼ xjhðgÞ; g ¼ yx

j�1
2 ; ð6Þ

Eqs. (2) and (3) become

f 0 ¼ h; ð7Þ

h00 þ j þ 1

2

� �
f h0 � jf 0h ¼ 0; ð8Þ

and the boundary conditions (4) and (5) become

f ð0Þ ¼ 0; hð0Þ ¼ 1; hðþ1Þ ¼ 0; ð9Þ

where the prime denotes the differentiation with respect

to g. The above equations can be combined as the so-

called Cheng and Minkowycz’s [15] equation

f 000ðgÞ þ j þ 1

2

� �
f ðgÞf 00ðgÞ � jf 02ðgÞ ¼ 0 ð10Þ

subject to

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; f 0ðþ1Þ ¼ 0: ð11Þ

For details, please refer to Ingham and Brown [16].

Ingham and Brown [16] proved that it holds
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2j þ 1 > 0;

i.e.

� 1

2
< j < þ1: ð12Þ

Under the transformation

f ðgÞ ¼ 2

j þ 1

� �1=2

F ðnÞ; n ¼ g
j þ 1

2

� �1=2

; ð13Þ

Eq. (10) becomes

F 000ðnÞ þ F ðnÞF 00ðnÞ � bF 02ðnÞ ¼ 0; ð14Þ

and the boundary conditions (11) become

F ð0Þ ¼ 0; F 0ð0Þ ¼ 1; F 0ðþ1Þ ¼ 0; ð15Þ

where the prime denotes the differentiation with respect

to n and

b ¼ 2j
j þ 1

: ð16Þ

Due to (12), it holds

�2 < b6 2 ð17Þ

for the boundary layer flows in a porous medium.

It is interesting that the same equations as (14) and

(15) were derived to describe the boundary layer flows

over a stretching wall [6–8,17,18]. We consider now the

two-dimensional boundary layer flow in the region

y > 0, where ðx; yÞ denotes a Cartesian coordinate sys-

tem and the flow results solely from the movement of an

impermeable flat plate at y ¼ 0 in its plane. It is assumed

that the speed of the boundary layer is given by wðxÞ and
the flow is such that the boundary layer equations are

appropriate. Under these assumptions, the basic equa-

tions are, see Banks [7]

u
ou
ox

þ v
ou
oy

¼ m
o2u
oy2

; ð18Þ

ou
ox

þ ov
oy

¼ 0; ð19Þ

subject to the boundary conditions

u ¼ wðxÞ; v ¼ 0 at y ¼ 0; ð20Þ

u ! 0 as y ! þ1; ð21Þ

where m is the kinematic viscosity and u, v are the ve-

locity components in the directions of increasing x, y,
respectively. Assume the stretching velocity of the plate

is

wðxÞ ¼ aðxþ bÞj; ð22Þ

where a and b are constants. Then, under the transfor-

mation
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m
aðj þ 1Þ

s
aðxþ bÞ

1
2ðjþ1ÞF ðnÞ;

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðj þ 1Þ

2m

r
yðxþ bÞ

1
2ðj�1Þ; ð23Þ

where w is the stream function defined in the usual way

as mention before, Eqs. (18) and (19) become

F 000ðnÞ þ F ðnÞF 00ðnÞ � bF 02ðnÞ ¼ 0; ð24Þ

and the boundary conditions (20) and (21) become

F ð0Þ ¼ 0; F 0ð0Þ ¼ 1; F 0ðþ1Þ ¼ 0; ð25Þ

which are exactly the same as (14) and (15), respectively,

with the same definition (16) for b. Note that F ðnÞ has
now physical meanings when j < �1, i.e. 2 < b < þ1.

Banks [7] showed that there is no solution when j ¼
�1=2, corresponding to b ¼ �2. Ingham and Brown [16]

rigorously proved this point. So, the difference is only

the region of b: �2 < b6 2 for flows in a porous me-

dium (corresponding to �1=2 < j < þ1) but �2 <
b < þ1 for a stretching wall (corresponding to �1=2 <
j < þ1 and �1 < j < �1), respectively. Banks [7]

gave numerical results of above equations for �26 b6

202 with the property F 0ðnÞP 0, which is exactly the

same as the first branch of numerical solutions given by

Ingham and Brown [16]. However, unlike Ingham and

Brown [16], Banks [7] did not find any dual solutions.

Some exact solutions of (14) and (15) were reported

by Crane [6]. When b ¼ 1, corresponding to j ¼ 1, one

has the exact solution

F ðnÞ ¼ 1� expð�nÞ; F 00ð0Þ ¼ 1: ð26Þ

When b ¼ �1, corresponding to j ¼ �1=3, one has the

exact solution

F ðnÞ ¼
ffiffiffi
2

p
tanhðn=

ffiffiffi
2

p
Þ; F 00ð0Þ ¼ 0: ð27Þ

So far, to the best of the authors’ knowledge, the

explicit analytic solutions of Eqs. (14) and (15), uni-

formly valid for 06 n < þ1 and all possible values of

the physical parameter �2 < b < þ1, have not been

reported. In this paper the homotopy analysis method

[9–11,13,14] is applied to derive two kinds of ex-

plicit analytic solutions of Eqs. (14) and (15). Unlike

perturbation techniques, the homotopy analysis method

does not depend upon small parameters at all. Besides,

unlike all previous analytic techniques, the homotopy

analysis method provides us with a simple way to control

convergence of approximation series and to adjust con-

vergence regions when necessary. In this paper the ho-

motopy analysis method is applied to solve the viscous

flows of free convection in a porous medium or

boundary layer flows above a stretching wall, governed

by the non-linear equation (14) with the boundary

conditions (15).
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3. Explicit analytic solution

3.1. Free convection over a vertical flat plate embedded in

a porous medium

Under the transformations

f ¼ kn; sðfÞ ¼ F ðnÞ; ð28Þ

the original equations (14) and (15) become

ks000ðfÞ þ sðfÞs00ðfÞ � bs02ðfÞ ¼ 0; ð29Þ

with the boundary conditions

sð0Þ ¼ 0; ks0ð0Þ ¼ 1; s0ðþ1Þ ¼ 0; ð30Þ

where the prime denotes the differentiation with respect

to f.
Due to the boundary conditions (30), sðfÞ can be

expressed by a set of base functions

expðf � nfÞjnP 0g ð31Þ

in the following form

sðfÞ ¼ c0 þ
Xþ1

n¼1

cn expð�nfÞ; ð32Þ

where cn is coefficient. This provides us with the Rule of

Solution Expression A, which plays an important role in

the frame of the homotopy analysis method, as shown

by Liao [13].

Due to the boundary conditions (30) and under the

Rule of Solution Expression A described by (32), it is

straightforward to choose

s0ðnÞ ¼ 1½ � expð � fÞ�=k0 ð33Þ

as the initial guess of sðfÞ, where k0 is the initial ap-

proximation of the coefficient k. Besides, due to Rule of

Solution Expression A and the governing equation (29),

we choose

L½Uðf; qÞ� ¼ k0

o3Uðf; qÞ
of3

�
� oUðf; qÞ

of

�
; ð34Þ

as our auxiliary linear operator, where q is an embed-

ding parameter. Note that the auxiliary linear operator

L has the property

L C1½ þ C2 expð� fÞ þ C3 expðfÞ� ¼ 0: ð35Þ

Furthermore, due to (29), we define such a non-linear

operator

N Uðf; qÞ;KðqÞ½ � ¼ KðqÞ o
3Uðf; qÞ
of3

þ Uðf; qÞ o
2Uðf; qÞ
of2

� b
oUðf; qÞ

of

� �2
: ð36Þ

Then, introducing a non-zero auxiliary parameter �h, we
construct the zero-order deformation equations
ð1� qÞL Uðf; qÞ½ � s0ðfÞ� ¼ �hqN Uðf; qÞ;KðqÞ½ �;
f P 0; q 2 ½0; 1�; ð37Þ

subject to the boundary conditions

Uð0; qÞ ¼ 0;
oUðf; qÞ

of

				
f¼þ1

¼ 0 ð38Þ

and

ð1� qÞ k0

oUðf; qÞ
of

�
� 1

�				
f¼0

¼ �hq KðqÞ oUðf; qÞ
of

�
� 1

�				
f¼0

: ð39Þ

When q ¼ 0, the zero-order deformation equations

have the solution

Uðf; 0Þ ¼ s0ðfÞ; Kð0Þ ¼ k0: ð40Þ

When q ¼ 1, the zero-deformation equations (37)–(39)

are the same as the original ones (29) and (30), provided

Uðf; 1Þ ¼ sðfÞ; Kð1Þ ¼ k: ð41Þ

Therefore, as q increases from 0 to 1, Uðf; qÞ varies or

deforms from the initial guess s0ðfÞ to the exact solution

sðfÞ governed by (29) and (30), so does KðqÞ from k0 to

k, respectively. This is the basic idea of the homotopy

and these kinds of variations are called deformations

in topology.

Thus, by Taylor’s theorem and (40), we have

Uðf; qÞ � s0ðfÞ þ
Xþ1

n¼1

snðfÞqn; ð42Þ

KðqÞ � k0 þ
Xþ1

n¼1

knqn; ð43Þ

where

snðfÞ ¼
1

n!
onUðf; qÞ

oqn

				
q¼0

; kn ¼
1

n!
onKðqÞ
oqn

				
q¼0

: ð44Þ

We emphasize that the zero-order deformation equa-

tions contain an auxiliary parameter �h, whose value we

have great freedom to choose. Assume that �h is so

properly chosen that above two series are convergent at

q ¼ 1, then due to (41) we have (and can prove) that

sðfÞ ¼ s0ðfÞ þ
Xþ1

n¼1

snðfÞ; ð45Þ

k ¼ k0 þ
Xþ1

n¼1

kn: ð46Þ

Differentiating the zero-order deformation equations

(37)–(39) m times with respect to f and then dividing

them by m! and finally setting q ¼ 0, we have the mth-
order deformation equation
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L smðfÞ½ � vmsm�1ðfÞ� ¼ �hRmðf; k0; k1; . . . ; km�1Þ; ð47Þ

subject to the boundary conditions

smð0Þ ¼ 0; s0mðþ1Þ ¼ 0 ð48Þ

and

s0mð0Þ ¼ vms
0
m�1ð0Þ þ

�h
k0

� � Xm�1

n¼0

kns0m�1�nð0Þ
"

� ð1� vmÞ
#

ð49Þ

under the definitions

Rm ¼
Xm�1

n¼0

kns000m�1�nðfÞ
�

þ snðfÞs00m�1�nðfÞ

� bs0nðfÞs0m�1�nðfÞ



ð50Þ

and

vk ¼
0; k6 1;
1; k > 1:

�
ð51Þ

It is easy to solve the linear mth-order deformation

equations (47) and (48). We emphasize that, if the term

Rm of (47) contains the term expð�fÞ, then, due to the

property (35), the solution smðfÞ has the term

f expð�fÞ;

which however disobeys the Rule of Solution Expression

A described by (32), although it is not the so-called

secular term in the traditional meaning. So, under the

Rule of Solution Expression A, we had to force the co-

efficient of the term expð�fÞ in Rm to be zero. This just

provides us with an algebraic equation for km�1. Then,

one can further get smðfÞ. In this way we obtain

k0; s1ðfÞ; k1; s2ðfÞ; . . . ; successively.
It is found that smðfÞ can be expressed by

smðfÞ ¼
Xmþ1

n¼0

cm;n expð�nfÞ; ð52Þ

where cm;n is coefficient. Due to (33), we have the first

two coefficients

c0;0 ¼ 1=k0; c0;1 ¼ �1=k0: ð53Þ

Substituting the expression (52) into (50), we have

Rm ¼ ðDm;1 � Cm;1Þ expð�fÞ �
Xmþ1

n¼2

vmþ2�nCm;n

�
� Dm;n þ bEm;n

�
expð�nfÞ; ð54Þ

where

Cm;n ¼
Xm�n

k¼0

kkn3cm�1�k;n; ð55Þ

Dm;n ¼
Xm�1

k¼0

Xminfkþ1;n�1g

j¼maxf0;n�mþkg
ðn� jÞ2ck;jcm�1�k;n�j; ð56Þ
Em;n ¼
Xm�1

k¼0

Xminfkþ1;n�1g

j¼maxf1;n�mþkg
jðn� jÞck;jcm�1�k;n�j: ð57Þ

Under the Rule of Solution Expression A described by

(32), it must hold

Dm;1 � Cm;1 ¼ 0; ð58Þ

which provides us with an algebraic equation for km�1.

When m ¼ 1, this equation gives

k0 ¼ 1: ð59Þ

When mP 2, we have, due to (58) and the definitions

(55) and (53), the recurrence formula

km�1 ¼ k0

Xm�2

n¼0

kncm�1�n;1

 
� Dm;1

!
: ð60Þ

Then, Rm becomes

Rm ¼ �
Xmþ1

n¼2

vmþ2�nCm;n

�
� Dm;n þ bEm;n

�
expð�nfÞ: ð61Þ

Solving the mth-order deformation equations (47)–(49)

under above expression of Rm, we have the recurrence

formulas

cm;n ¼ vmvmþ2�ncm�1;n

þ
�h vmþ2�nCm;n � Dm;n þ bEm;n

� �
k0nðn2 � 1Þ ð62Þ

for 26 n6mþ 1, and

cm;1 ¼ �s0mð0Þ �
Xmþ1

n¼2

ncm;n; ð63Þ

cm;0 ¼ �
Xmþ1

n¼1

cm;n; ð64Þ

where

s0mð0Þ ¼ �vm

Xm
k¼1

kcm�1;k �
�h
k0

� �

� ð1
"

� vmÞ þ
Xm�1

n¼0

Xm�n

k¼1

kkncm�1�n;k

#
: ð65Þ

Therefore, we obtain such an explicit analytic solu-

tion of (14) and (15), i.e.

F ðnÞ ¼
Xþ1

m¼0

Xmþ1

n¼0

cm;n expð�nknÞ; ð66Þ

where k is given by (46) under the definition (60), and the

coefficients cm;n are calculated first by (53) and then by

the recurrence formulas (62)–(64) under the definitions

(65) and (55)–(57). At the Mth-order of approximation,

we have
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Fig. 1. Comparison of the numerical results of F 00ð0Þ with the

50th-order of approximation (69). Symbols: numerical results

given by Banks [7]; dash-dotted line: analytic approximation

when �h ¼ �1; dash-dot-dotted line: analytic approximation

when �h ¼ �1=2; solid line: analytic approximation when

�h ¼ �1=5.
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F ðnÞ �
XM
m¼0

Xmþ1

n¼0

cm;n expð�nknÞ; ð67Þ

F 0ðnÞ � �k
XM
m¼0

Xmþ1

n¼1

ncm;n expð�nknÞ ð68Þ

and

F 00ð0Þ � k2
XM
m¼0

Xmþ1

n¼1

n2cm;n; ð69Þ

where

k �
XM�1

m¼0

kn: ð70Þ

Note that F 00ð0Þ has clear physical meanings. For a po-

rous medium the value of F 00ð0Þ represents the reduced

wall heat flux (because F 00ð0Þ ¼ s0ð0Þ) while for the

stretched wall it represents the skin friction at the wall.

So far we talk rather little about the auxiliary pa-

rameter �h, which in fact plays a very important role in

the frame of the homotopy analysis method. Obviously,

it is very important to ensure that the explicit analytic

solution (66) is valid for all nP 0 in a large enough re-

gion of b. In fact, it is the auxiliary parameter �h which

provides us with a simple way to control the convergence

of approximation series and to adjust convergence re-

gions when necessary.

Liao [19] proved in rather general cases that con-

vergent series given by the homotopy analysis method

(at q ¼ 1) must be one of exact solutions of a considered

non-linear problem. And it is easy to check whether or

not a series is convergent in a given region. So, it is

convenient to investigate the relationship between the

convergence of the explicit analytic solution (66) and the

value of the auxiliary parameter �h, especially by means

of symbolic computation software such as mathematica,

Maple and so on.

Physically speaking, F 00ð0Þ and F 0ðnÞ are important

quantities. Note that F 00ð0Þ is a function of b. Our cal-

culations indicate that solution (66) is divergent when

�h > 0. When �h ¼ �1, corresponding to the traditional

way to construct a homotopy, F 00ð0Þ given by (69) is

convergent in the region �2 < b < 1, as shown in Fig. 1.

However, when �h ¼ �1=2, the convergence region of

F 00ð0Þ is enlarged to �2 < b6 3, and when �h ¼ �1=5, the
convergence region is further enlarged to �2 < b6 9, as

shown in Fig. 1. Our calculations indicate that, the

closer �h is to 0 from below, the larger the convergence

region of F 00ð0Þ becomes, but the higher-order of ap-

proximations is needed to get accurate enough approx-

imations. It seems that the convergence region of F 00ð0Þ
would tend to infinity as �h ! 0 from below, although it

is not an efficient expression for large b. This clearly

verifies that the auxiliary parameter �h indeed provides
us with a simple way to control convergence of ap-

proximation series and to adjust convergence regions

when necessary.

For the viscous flow in a porous medium, the solu-

tion has physical meaning only when �2 < b6 2. So,

choosing �h ¼ �1=2, the explicit analytic solution (66) is

convergent to the corresponding numerical results in the

whole region of the physical parameter �2 < b6 2, as

shown in Figs. 1 and 2, so that it can be regarded as an

exact analytic solution of Cheng and Minkowyez’s

equation [15] for viscous flow in a porous medium. Note

that, as the non-linearity of the considered problem

becomes stronger, higher-order approximations are

necessary to give accurate enough approximations, as

shown in Fig. 2.

Ingham and Brown [16] numerically found dual so-

lutions of Cheng and Minkowyez’s equation [15] for

b > 0. Our analytic solution (66) agrees well with one

branch of their numerical results with the property

F 0ðnÞP 0 for all nP 0. However, our analytic approach

mentioned above can not give another branch of solu-

tions, which contain negative values of the velocity F 0ðnÞ
or temperature h in some regions and this is not physi-

cally realistic, as explained later.

To investigate the multiple solutions of equations

(14) and (15) when b > 0, more degrees of freedom

should be introduced in the frame of the homotopy

analysis method. Besides, our analytic solution (66) is

not an efficient expression for large b. So, it is worth-

while giving another kind of analytic solutions of (14)
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Fig. 2. Comparison of the numerical results of F 0ðnÞ with the
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and (15) for all b P 0, which has physical meanings for

the viscous flows for a stretching wall described in the

2nd section.

3.2. Boundary-layer flows above a stretching wall

Let c denote a positive constant. Due to the bound-

ary conditions (15), F ðnÞ can be expressed by a set of

base functions

expðf � ncnÞjnP 0g ð71Þ

in the following form

F ðnÞ ¼ a0 þ
Xþ1

n¼1

an expð�ncnÞ; ð72Þ

where an is coefficient. This provides us with the Rule

of Solution Expression B.
Under the Rule of Solution Expression B and due to

the boundary conditions (15), it is straightforward to

choose

F0ðnÞ ¼ 1½ � expð � cnÞ�=c ð73Þ

as the initial guess of F ðnÞ. Besides, due to Rule of So-

lution Expression B described by (72) and the governing

equation (14), we choose

fLL½eUUðn; qÞ� ¼ expðcnÞ o3 eUUðn; qÞ
on3

"
� c2

oeUUðn; qÞ
on

#
; ð74Þ
as our auxiliary linear operator, where q is an embed-

ding parameter. Note that the auxiliary linear operatorfLL has the propertyfLL C1½ þ C2 expð � cnÞ þ C3 expðcnÞ� ¼ 0: ð75Þ

Furthermore, due to (14), we define such a non-linear

operator

fNN eUUðn; qÞ
h i

¼ o3 eUUðn; qÞ
on3

þ eUUðn; qÞ o
2 eUUðn; qÞ
on2

� b
oeUUðn; qÞ

on

" #2
: ð76Þ

Then, we construct the zero-order deformation equa-

tions

ð1� qÞfLL eUUðn; qÞ
h

� F0ðnÞ
i
¼ �hqfNN eUUðn; qÞ

h i
;

q 2 ½0; 1�; ð77Þ

subject to the boundary conditions

eUUð0; qÞ ¼ 0;
oeUUðn; qÞ

on

					
n¼0

¼ 1;
oeUUðn; qÞ

on

					
n¼þ1

¼ 0:

ð78Þ

Similarly, we have the relationship

F ðnÞ ¼ F0ðnÞ þ
Xþ1

m¼1

FmðnÞ; ð79Þ

where

FmðnÞ ¼
1

m!
om eUUðn; qÞ

oqm

					
q¼0

ð80Þ

is governed by the corresponding mth-order deformation

equationfLL FmðnÞ½ � vmFm�1ðnÞ� ¼ �heRRmðnÞ; ð81Þ

subject to the boundary conditions

Fmð0Þ ¼ 0; F 0
mð0Þ ¼ 0; F 0

mðþ1Þ ¼ 0 ð82Þ

under the definitions

eRRmðnÞ ¼ F 000
m�1ðnÞ þ

Xm�1

n¼0

FnðnÞF 00
m�1�nðnÞ

�
� bF 0

nðnÞF 0
m�1�nðnÞ



: ð83Þ

Under the Rule of Solution Expression B described by

(72), the term eRRmðnÞ contains expð�cnÞ. However, due to

the definition (74), Eq. (81) becomes

o3

on3

�
� c2

o

on

�
FmðnÞ½ � vmFm�1ðnÞ� ¼ �h expð�cnÞeRRmðnÞ;

ð84Þ
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whose righthand side

expð�cnÞeRRmðnÞ

does not contain the term expð�cnÞ at all! In this way,

the Rule of Solution Expression B described by (72) is

obeyed. This indicates the flexibility of the homotopy

analysis method.

It is found that FmðnÞ governed by (81) and (82) can

be expressed by

FmðnÞ ¼
X2mþ1

n¼0

am;n expð�ncnÞ; ð85Þ

where am;n is coefficient. Substituting above expression

into the mth-order deformations (81) and (82), we have

the recurrence formulas

am;n ¼ vmv2mþ1�nam�1;n

þ
�h v2mþ2�ncðn� 1Þ3am�1;n�1 �Am;n�1 þ vn�1bBm;n�1

h i
cnðn2 � 1Þ

ð86Þ

for 26 n6 2mþ 1, and

am;1 ¼ �
X2mþ1

n¼2

nam;n; ð87Þ

am;0 ¼ �
X2mþ1

n¼1

am;n ð88Þ

with the definitions

Am;j ¼
Xm�1

n¼0

Xminf2nþ1;j�1g

i¼maxf0;j�2mþ2nþ1g
ðj� iÞ2an;iam�n�1;j�i;

16 j6 2m ð89Þ

and

Bm;j ¼
Xm�1

n¼0

Xminf2nþ1;j�1g

i¼maxf1;j�2mþ2nþ1g
iðj� iÞan;iam�n�1;j�i;

26 j6 2m: ð90Þ

Due to the initial guess (73), we have the first two

coefficients

a0;0 ¼ 1=c; a0;1 ¼ �1=c: ð91Þ

Thus, starting from these two coefficients, we can cal-

culate the coefficients am;n for m ¼ 1; 2; 3; . . . ; 06
n6 2mþ 1 by means of the above recurrence formulas.

So, we have the second kind of explicit analytic solution

F ðnÞ ¼
Xþ1

k¼0

X2kþ1

n¼0

ak;n expð�ncnÞ: ð92Þ
At the mth-order of approximation we have

F ðnÞ �
Xm
k¼0

X2kþ1

n¼0

ak;n expð�ncnÞ; ð93Þ

which gives

F 0ðnÞ � �c
Xm
k¼0

X2kþ1

n¼1

nak;n expð�ncnÞ ð94Þ

and

F 00ð0Þ � c2
Xm
k¼0

X2kþ1

n¼1

n2ak;n: ð95Þ

Unlike (66), the explicit analytic solution (92) has two

parameters to be chosen. One is the auxiliary parameter

�h. The other is the parameter c. It is natural to choose

c ¼ 1 at first. When c ¼ 1 and �h is a negative constant,

we find that the convergence region of the analytic ap-

proximation F 00ð0Þ given by (95) is strongly dependent

upon the value of �h and becomes larger as �h tends to

zero from below, as shown in Fig. 3. When c ¼ 1 and �h
is a function of b such as �h ¼ �1=ð1þ b=7Þ, the higher

the order of approximation, the larger the convergence

regions, as shown in Fig. 4, indicating that the conver-

gence region about b might become infinity as the order

of approximation tends to infinity. Thus, when c ¼ 1

and �h ¼ �1=ð1þ b=7Þ, the explicit analytic solution (92)

is valid for 06 b < þ1, as shown in Fig. 5 for F 0ðnÞ.
Note that we have freedom to choose other values

of c. Due to the definition (73) of F0ðnÞ, we have

F0ðþ1Þ ¼ 1=c:
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On the other side, the exact solutions (26) and (27)

provide us with the exact value F ðþ1Þ ¼ 1 when b ¼ 1

and F ðþ1Þ ¼
ffiffiffi
2

p
when b ¼ �1. So, we choose
c ¼
ffiffiffiffiffiffiffiffiffiffiffi
b þ 3

p

2
ð96Þ

to enforce

F0ðþ1Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
b þ 3

p

to be above-mentioned values of the exact solutions

given by Crane [6]. It is a surprise for us to find that,

when c ¼
ffiffiffiffiffiffiffiffiffiffiffi
b þ 3

p
=2 and �h ¼ �1, even the 3rd-order

approximation

F 00ð0Þ ¼ � 145293þ 231153b þ 94999b2 þ 12395b3

15120ðb þ 3Þ5=2

ð97Þ

agrees quite well with the numerical results for

06 b6 1000, as shown in Fig. 6. The agreement of

above expression with numerical results is so good in

such a large region that it could be valid in the whole

region 06 b < þ1. This verifies once again the validity

of the homotopy analysis method.

However, so far we just find the same branch of the

solutions as the numerical ones reported by Banks [7],

with the property F 0ðnÞP 0 for nP 0. We attempt a lots

of different values of c and �h but found that, as long as

an approximation series is convergent, it must converge

to the branch of solutions with the property F 0ðnÞP 0

for n P 0. Besides, we even attempt a more general ini-

tial guess

F0ðnÞ ¼ ½1� expð�cnÞ�=c þ d½1� expð�cnÞ�2; ð98Þ
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but still fail to get a result convergent to the 2nd branch

of solutions reported by Ingham and Brown [16] with

the negative F 0ðnÞ in some region. Note that both of the

explicit analytic solutions (66) and (92) give the same

branch of solutions with the property F 0ðnÞP 0 for

nP 0. This might imply that the 2nd branch of numer-

ical solutions reported by Ingham and Brown [16] would

not exponentially tend to a constant as n ! þ1, be-

cause, seriously speaking, it is impossible to verify this

kind of property at infinity by numerical methods.

Note that, for a porous medium, it holds

T ¼ T1 þ xjðTw � T1Þh:

So, T < T1 in some region for negative temperature h
when Tw > T1. Assume that the fluid is water and the

temperature T1 is just 0.0001 �C and the wall is suddenly

heated to the temperature Tw. The first branch of solu-

tions indicates that the temperature decays monoto-

nously from Tw to T1, which is physically realistic.

However, the second branch of solutions indicates that

the temperature near the wall, although the wall is

suddenly heated to Tw, is below zero so that the water at

that region is frozen and the solution becomes invalid.

So, the second branch of solutions seems not physically

realistic.
4. Discussion and conclusions

In this paper the homotopy analysis method is suc-

cessfully applied to give two kinds of explicit analytic

solutions of the boundary-layer equations, which is valid

not only for the convective viscous flow past a suddenly

heated vertical plate in a porous medium but also for the

viscous flow over a stretching wall. The solution (66)

when �h ¼ �1=2 is valid for �2 < b6 2 that covers the

whole region of b having physical meanings for the vis-

cous flows in a porous medium. The solution (92) when

�h ¼ �1=ð1þ b=7Þ and c ¼ 1 is valid for 06 b < þ1,

and even the 3rd-order approximation (97) of F 00ð0Þ
when c ¼

ffiffiffiffiffiffiffiffiffiffiffi
b þ 3

p
=2 and �h ¼ �1 gives accurate results

for 06 b < þ1. Note that the two kinds of analytic

solutions are explicitly given by recurrence formulas. To

the best of our knowledge, it is the first time that such

kinds of explicit analytic solutions of Eqs. (14) and (15)

are reported. Because many phenomenon can be de-

scribed by Eqs. (14) and (15), our analytic solutions (66)

and (92) may find their wide applications in science and

engineering.

Our approach gives the solutions with the property

F 0ðnÞP 0 for n P 0. However, both of our two kinds of

solutions can not give the second branch of numerical

solutions with the property F 0ðnÞ < 0 in some region of

n, reported by Ingham and Brown [16]. It seems possible

that the second branch of solution does not decay ex-

ponentially. It seems also possible that the second branch
of solutions is not physically realistic. Thus, it is

worthwhile further investigating the multiple solutions

of Eqs. (14) and (15) and giving the physical meanings of

the second branch of solutions reported by Ingham and

Brown [16].

Note that our analytic solutions contain the auxiliary

parameter �h. It is the auxiliary parameter �h which pro-

vides us with a simple way to control convergence of

approximation series and to adjust convergence regions,

as shown in this paper. This is the advantage of the

homotopy analysis method over all other perturbation

and non-perturbation methods. The success of the ho-

motopy analysis method for considered problems veri-

fies once again that it is indeed a useful analytic tool for

non-linear problems in science and engineering, al-

though further improvements are necessary.
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